Developing new therapies for Batten Disease

H2020-PHC-14-2015
New therapies for rare diseases
GA no. 666918

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 666918
Academic Partners
University College London – UK
Royal Veterinary College - UK
Manchester Met University – UK
Cardiff University – UK
University of Hamburg – Germany
University of Salamanca – Spain
TIGEM, Naples - Italy

Industry Partners
Pronexus - Sweden
Orphazyme - Denmark
LEITAT - Spain
Acureomics - Sweden
OSI - Latvia
BATCure Concept

<table>
<thead>
<tr>
<th>Pre-discovery</th>
<th>Discovery</th>
<th>Pre-clinical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease Models</td>
<td>Identification of Surrogate Markers</td>
<td>Lead Identification & Optimization</td>
</tr>
<tr>
<td>WP01 + WP04</td>
<td>WP02 + WP03</td>
<td>WP05 + WP06</td>
</tr>
<tr>
<td>WP07 + WP08</td>
<td>WP09</td>
<td></td>
</tr>
</tbody>
</table>

CLN3, CLN6, CLN7

- Transmembrane: CLN3, CLN6, CLN7, CLN8
- Soluble lysosomal: CLN1, CLN2, CLN5
BATCure work packages

<table>
<thead>
<tr>
<th>8 experimental Work Packages:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New Models</td>
<td>Induced pluripotent stem cells (iPSC), transgenic zebrafish, transgenic yeast</td>
</tr>
<tr>
<td>Pathway Leads</td>
<td>Identifying new therapeutic target pathways using genetics & cell biology</td>
</tr>
<tr>
<td>Metabolome</td>
<td>Developing new diagnostic & monitoring techniques using metabolomics</td>
</tr>
<tr>
<td>Natural History</td>
<td>Natural history of the brain and beyond</td>
</tr>
<tr>
<td>Compound Leads</td>
<td>Identifying new therapeutic compound leads</td>
</tr>
<tr>
<td>Zebrafish Triage</td>
<td>Determination of therapeutic potential using zebrafish</td>
</tr>
<tr>
<td>Gene Therapy</td>
<td>Gene therapy for the brain, eye and other organs in mouse models</td>
</tr>
<tr>
<td>Drug Therapy</td>
<td>Delivering new small molecule therapy to the mouse</td>
</tr>
</tbody>
</table>

Supporting Work Packages:
- Patients’ Organisation involvement
- Management
BATCURE CONCEPT

SMALL MOLECULE
UCL, AcureO, USAL, Orphazyme
Leads that rescue yeast & zebrafish models
Leads from disease biology

GENE THERAPY
UCL
Toxicity CLN3, CLN6
Vectors CLN3, CLN6

Disease Models
Identification of Surrogate Markers
Lead Identification & Optimization
Drug & Gene Therapeutic Strategies
Prepare for Clinical Trials
MMU – What do we do?

WP01- New models for Batten disease
Stem cells drive human development
Stem cells drive human development and maintain healthy organs
Stem cell differentiation: A one way street?

Waddington’s epigenetic landscape model
Stem cell differentiation: A one way street?

Waddington’s epigenetic landscape model
induced Pluripotent Stem Cells (iPSC)
Turning pluripotent stem cells into neurons

Embryonic Stem Cell → Neuroepithelial Cell → Neural Stem Cell → Neural Progenitor Cell → Neuron

D0 → D6 → D10 → D13+ → +28D

ESC → NEC → NSC → NPC → Neuron
Developing new therapies for Batten disease using iPSC

CLN3, 6 & 7

- Better understanding of the disease
- Evaluating new drug targets
- Gene therapy efficacy
DNA: The genetic code to make proteins
RNA: A mobile copy of the DNA encoding a gene
Protein: The cells building blocks
Batten disease at the cell level

DNA: The genetic code to make proteins
RNA: A mobile copy of the DNA encoding a gene
Protein: The cells building blocks
DNA codes for genes
Genes to proteins

Promoter

Gene

Transcription

RNA Splicing

mRNA

Translation

Protein
Genes to proteins - CLN

[Diagram showing the process of gene expression]

1. **Promoter**
2. **Gene**
 - **Transcription**
 - **RNA Splicing**
 - **mRNA**
 - **Translation**
 - **CLN**

[Diagram details showing the process of gene expression and the resulting CLN]
Batten disease at the cell level

Lysosome
iPSC derived neurons as a drug screening platform

Patient iPSC-derived neurons

Drug application

Control iPSC-derived neurons

By far the best control iPSC for comparison are from siblings
European collaboration benefits Batten disease research
My own journey in Batten disease research

Genetic Heterogeneity in Neuronal Ceroid Lipofuscinosis (NCL): Evidence That the Late-Infantile Subtype (Jansky-Bielschowsky Disease; CLN2) Is Not an Allelic Form of the Juvenile or Infantile Subtypes
Ruth Williams,* Joui Vesa,† Irma Jarvelä,‡ Tristan McKay,* Hannah Mitchison,* Elna Helseth,† Andrew Thompson,§ David Callen,‖ Grant Sutherland,† David Luna-Battadano,‖ Ray Stalling,‖ Leena Pelkonen,† and Mark Gardiner*†

Journal of Inherited Metabolic Disease, 1993;16(2):342-4. Linkage analysis of late-infantile neuronal ceroid-lipofuscinosis (CLN2) using markers on chromosome 16p.
Williams R†, Mitchison H, McKay T, Jarvelä I, Gardiner RM.

Fine Genetic Mapping of the Batten Disease Locus (CLN3) by Haplotype Analysis and Demonstration of Allelic Association with Chromosome 16p
Microsatellite Loci
Hannah M. Mitchison, Andrew D. Thompson, John C. Mulley, Helen M. Kozman, Rob I. Richards, David F. Callen, Ray L. Stallings, Norman A. Doggett, John Attwood, Tristan R. McKay, Grant R. Sutherland, R. Mark Gardiner
Department of Paediatrics, University College London Medical School, Rayne Institute, University Street, London WC1E 6JJ, United Kingdom; Centre for Medical Genetics, Department of Cytogenetics and Molecular Genetics, Women and Children’s Hospital, Adelaide 5006, South Australia; Center for Human Genome Studies and Life Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545; and MRC Human Biochemical Genetics Unit, The Galton Laboratory, Woffson House, 4 Stephenson Way, London NW1 2HE, United Kingdom

2016-18
€6M

My own journey in Batten disease research